Bahdanau, D., Cho, K., & Bengio, Y. (2015). “Neural Machine Translation by Jointly Learning to Align and Translate.” ICLR Proceedings.
• Bengio, Y., LeCun, Y., & Hinton, G. (2021). “Deep Learning for AI: The Next Frontiers.” Nature, 595, 211–220.
• Bronstein, M., Bruna, J., Cohen, T., & Velickovic, P. (2022). “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.” Nature, 613, 482–493.
• Cho, K. et al. (2014). “Learning Phrase Representations Using RNN Encoder–Decoder.” EMNLP.
• Fei-Fei, L. (2023). AI 2.0: Human-Centered Machine Learning. Stanford University Press.
Vol.01, Issue 01, July, 2025
© 2025 Author(s). Open Access under CC BY 4.0 License. 10
• Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
• Goodfellow, I., et al. (2014). “Generative Adversarial Nets.” NIPS.
• Henderson, P., et al. (2022). “Towards Environmentally Sustainable Deep Learning.” Nature Machine Intelligence, 4(3), 196–203.
• Hinton, G. (2022). “Forward-Forward Algorithm: The Next Stage of Neural Computation.” arXiv Preprint.
• Hochreiter, S., & Schmidhuber, J. (1997). “Long Short-Term Memory.” Neural Computation, 9(8), 1735–1780.
• Ho, J., Jain, A., & Abbeel, P. (2020). “Denoising Diffusion Probabilistic Models.” NeurIPS.
• Kingma, D. P., & Welling, M. (2014). “Auto-Encoding Variational Bayes.” ICLR.
• LeCun, Y., Bengio, Y., & Hinton, G. (2015). “Deep Learning.” Nature, 521(7553), 436–444.
• Lipton, Z. C. (2018). “The Mythos of Model Interpretability.” Communications of the ACM, 61(10), 36–43.
• Marcus, G. (2023). Rebooting AI: Building Artificial Intelligence We Can Trust. Pantheon.
• Meta AI. (2023). EfficientFormer and DINOv2 Whitepaper.
• OpenAI. (2024). GPT-5: Advancing General-Purpose Reasoning. OpenAI Research.
• Patterson, D., Gonzalez, J., Le, Q., & Dean, J. (2021). “Carbon Emissions and Large Neural Networks.” arXiv Preprint.
• Rudin, C. (2022). “Stop Explaining Black-Box Models for High-Stakes Decisions.” Nature Machine Intelligence, 4(3), 206–215.
• Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). “The Graph Neural Network Model.” IEEE Transactions on Neural Networks, 20(1), 61–80.
• Silver, D. et al. (2018). “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm.” Science, 362(6419), 1140–1144.
• Sutton, R. (2019). “The Bitter Lesson.” In AI Perspectives.
• Vaswani, A. et al. (2017). “Attention Is All You Need.” NeurIPS Proceedings.
• Voulodimos, A., Doulamis, N., & Protopapadakis, E. (2021). “Recent Advances in Deep Learning: An Overview.” Neural Computing and Applications, 33, 12625–12644.
• World Economic Forum. (2024). AI and Sustainable Innovation Report. WEF Publications.
• Zhang, T., et al. (2024). “Sparse Transformer Models for Efficient Learning.” ICML Proceedings.
• Zhao, H. et al. (2025). “Quantum-Enhanced Deep Neural Networks.” Nature Communications, 16(1), 4451–4466.