• Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model
predictions. Advances in Neural Information Processing Systems, 30.
• Mittelstadt, B., Russell, C., & Wachter, S. (2019). Explaining explanations in AI.
Proceedings of the Conference on Fairness, Accountability, and Transparency.
• Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2018).
Explaining explanations: An overview of interpretability of machine learning. IEEE 5th
International Conference on Data Science and Advanced Analytics.
• European Commission. (2021). Proposal for a regulation laying down harmonized
rules on artificial intelligence (AI Act). Brussels: EU Publications.
• Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI)
program. AI Magazine, 40(2), 44–58.
• Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). Machine learning
interpretability: A survey on methods and metrics. Electronics, 8(8), 832.
• Molnar, C. (2020). Interpretable machine learning: A guide for making black box
models explainable. Leanpub.
• Miller, T. (2019). Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267, 1–38.
• Suresh, H., & Guttag, J. V. (2019). A framework for understanding unintended
consequences of machine learning. arXiv preprint arXiv:1901.10002.
• Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Causability
and explainability of artificial intelligence in medicine. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 9(4), e1312.
• Rajkomar, A., et al. (2018). Scalable and accurate deep learning for electronic health
records. npj Digital Medicine, 1(1), 18.
• Tjoa, E., & Guan, C. (2020). A survey on explainable artificial intelligence (XAI):
Toward medical XAI. IEEE Transactions on Neural Networks and Learning Systems,
32(11), 4793–4813.
• Chen, J., Song, L., Wainwright, M. J., & Jordan, M. I. (2018). Learning to explain:
An information-theoretic perspective on model interpretation. ICML.
• Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado,
A., & Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI. Information Fusion,
58, 82–115.
• Biran, O., & Cotton, C. (2017). Explanation and justification in machine learning: A
survey. IJCAI Workshop on Explainable Artificial Intelligence.
• Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., & Müller, K. R. (2021).
Explaining deep neural networks and beyond: A review of methods and applications.
IEEE Proceedings, 109(3), 247–278.
• Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D.
(2018). A survey of methods for explaining black-box models. ACM Computing
Surveys, 51(5), 93.
• Zhang, Y., & Chen, X. (2020). Explainable AI in the era of deep learning: Methods,
applications, and challenges. IEEE Access, 8, 22041–22052.
• Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in
society. Harvard Data Science Review, 1(1).
• Doran, D., Schulz, S., & Besold, T. R. (2017). What does explainable AI really mean?
A new conceptualization of perspectives. AI Magazine, 38(3), 54–62.
• Watson, D., & Floridi, L. (2020). The explanation game: A formal framework for